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Abstract— Social Robot Navigation is the skill that allows
robots to move efficiently in human-populated environments
while ensuring safety, comfort, and trust. Unlike other areas
of research, the scientific community has not yet achieved
an agreement on how Social Robot Navigation should be
benchmarked. This is notably important, as the lack of a
de facto standard to benchmark Social Robot Navigation can
hinder the progress of the field and may lead to contradicting
conclusions. Motivated by this gap, we contribute with a short
review focused exclusively on benchmarking trends in the
period from January 2020 to July 2025. Of the 130 papers
identified by our search using IEEE Xplore, we analysed the 85
papers that met the criteria of the review. This review addresses
the metrics used in the literature for benchmarking purposes,
the algorithms employed in such benchmarks, the use of human
surveys for benchmarking, and how conclusions are drawn from
the benchmarking results, when applicable.

I. INTRODUCTION

Benchmarking is key to providing evidence of the ef-
fectiveness of algorithms under equitable conditions. For
instance, in object detection, metrics such as IoU [84] are
essentially taken as a standard, allowing objective compar-
isons between different algorithms. Unlike computer vision,
the Social Robot Navigation (SocNav) community has not
yet reached an agreement on how SocNav algorithms should
be benchmarked. This is, arguably, not due to lack of interest
but due to the subjective nature of what quality means
in the context of SocNav, and to the inherent complexity
of human-robot interactions. Although, theoretically, in-situ
surveys constitute one of the benchmarking approaches with
strongest support from the research community, in practice,
the time and operational costs of running significant and
reproducible surveys frequently make them unfeasibly ex-
pensive [37].

The absence of a de facto standard benchmark for SocNav
can hinder the progress of the field, as research can reach
contradictory or flawed conclusions. Moreover, this absence
can generate confusion for SocNav researchers, as it can be
challenging to establish which algorithms their contributions
should be compared against, which metrics should be used,
and how to make a final decision whenever the metrics point
in different directions. In light of the aforementioned situa-
tion, this review addresses the following research questions
related to SocNav benchmarking:
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Fig. 1: PRISMA flow diagram of the process followed.

1) What metrics and algorithms are used?
2) How frequent are surveys involving human raters?
3) How are benchmarking results interpreted?

II. METHODOLOGY
Given that the purpose of this paper is to provide an

overview of the latest trends in benchmarking SocNav
algorithms rather than a fully-comprehensive review, the
literature search was conducted exclusively on IEEE Xplore.
Nevertheless, the methodology followed a structured ap-
proach to ensure reproducibility.

The search query used was (”social robot navigation” OR
”social navigation”), and it was applied to the full text and
metadata of the articles to maximise recall. Also in line with
our goal of focusing on the current trends, the search was
constrained to works published between January 2020 and
July 2025, with all document types included (i.e., conference
and journal papers). The 130 papers returned by the search
query were subjected to a two-stage screening process, as
depicted in Fig. 1:
• Topic relevance: Despite matching the search query, some

of the papers retrieved addressed SocNav tangentially and
did not have it as their central focus. This constituted
an exclusion criterion. Examples include works referring
to SocNav as a necessary skill or an application area
(e.g., trajectory prediction). As a result, eight papers were
discarded after manual inspection, leaving 122 papers.

• Algorithmic contribution: Of the remaining papers, 44
were excluded because they did not propose a navigation
algorithm. After this second exclusion criterion, 85 papers
were retained for review (65% of the total retrieved).
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Fig. 2: On the left, an overview of the overall screening
decisions. On the right, the distribution of the rationale for
the application of the second exclusion criterion.

The screening was evenly distributed among the authors
of the review, each paper being screened by two different
members of the team to ensure consistent application of the
criteria. In case of doubt or conflict, the team discussed the
classification collectively.

The papers excluded after applying the second exclusion
criterion were: HRI studies (6), datasets-only papers (5), po-
sition papers (3), reviews (2), or focused on other algorithmic
topics other than robot control (44). The papers in this last
category were categorised as: software & simulation (10),
human trajectory prediction (3), sensing (3), proxemics (1),
or other algorithmic questions (5, with only 1 item per
category). The distribution of the reasons why papers were
excluded is shown in Fig. 2.

Each of the final 85 papers that passed the criteria was
reviewed to extract:
• the quantitative navigation metrics used,
• the algorithms used for for quantitative benchmarking,
• the use of surveying for benchmarking, and
• how conclusions were extracted from the benchmarking

process.

A. Further clarifications regarding metric selection

Metrics accounting for a phenomenon or its absence
were considered equivalent (e.g., ratio of missions with and
without a collision). The same applied to metrics differing
only by a threshold, such as Space Compliance (SC) and
the Intimate Space Compliance.

Some works used weighted averages of metrics to circum-
vent the choice of a single metric. Although this can simplify
comparisons, the weights were arbitrary in all instances
encountered. In those cases, we considered the components
rather than their weighted average.

Finally, metrics not directly related to navigation, such as
perception or communication cues, were excluded.

B. Further clarifications regarding algorithm selection

Comparisons against pedestrian movement in a dataset or
against a manually operated robot were also disregarded, as
such comparisons depend on the specific pedestrian or op-
erator’s skills and do not establish a measurable property of
a trajectory or algorithm. Similarly, ablations of a proposed

algorithm, and algorithms varying only in parameters (e.g.,
the profile of social force models), were also considered as
the same algorithm.

III. RESULTS

RQ1) What metrics and algorithms are used?

Of the 85 papers reviewed, 53 provided quantitative met-
rics for comparison against 3rd-party algorithms (62.4%),
17 (20%) reported quantitative results using metrics but no
comparison against other algorithms, and 15 (17.6%) did not
provide any quantitative results on navigation performance
(some of these relied to human surveys). Overall, 66 papers
(77.6%) used non-social metrics, 46 (54.1%) reported social
metrics, and 40 (47.1%) used both types.

As for the rationale for metric selection, out of the 69
papers using any metric, 36 papers (52.2%) did not provide
any rationale, 19 (27.5%) justified their choice (e.g., based
on good coverage of desired features), and 14 (20.3%)
referred to the metrics selected being widely used, seen in
previous literature, or used in a paper the authors built upon.

Regarding the rationale behind selecting algorithms for
benchmarking, of the 53 papers comparing their performance
against 3rd-party baselines, 4 (7.3%) chose based on sim-
ilarity, 8 (15.1%) based on the papers they improved on,
7 (13.2%) based on popularity, 9 (16.4%) based on the
papers being state-of-the-art, 3 (5.7%) based on subjective
perception of quality, 3 (5.7%) followed choices made in
previous literature, and 20 (35.8%) did not specify any
rationale.

The metrics used for comparison, after the grouping as
described in Sec II, are shown in Table I. The algorithms
used for comparison are shown in Fig. 3, along with the
papers and the metrics used in the comparisons.

RQ2) How frequent are surveys involving human raters?

Out of the 85 papers considered, 16 (18.9%) papers
performed in-situ human-based surveys, but only 6 of these
(7.1%) included alternative 3rd party algorithms for bench-
marking purposes [94, 172, 115, 126, 52, 150]. The remain-
ing 10 exclusively surveyed the performance of their own
proposal. The most common questions asked in these surveys
can be found in Table II.

RQ3) How are benchmarking results interpreted?

Out of 26 papers claiming better performance than the
baselines used, 22 did so with either 2 or fewer metrics, or 2
or fewer algorithms, 3 of which used a single metric. Of the
same 26, 5 used a single algorithm but multiple metrics; this
can be considered a reasonable to claim better performance
than a specific algorithm, but not necessarily state-of-the-
art performance. Finally, 3 papers made claims that did not
follow from the evidence provided.

A total of 14 papers claimed partial superiority, depending
on the metrics and scenarios, and 3 papers claimed achieving
results comparable but not necessarily surpassing SOTA
performance.



Fig. 3: Sankey diagram showing, left to right, a categorisation of metrics in social vs. non-social, the general variables
measured by the metrics, the metrics found in the review, the works reviewed in this paper, and the baselines they used.



Short Definition Variable Paper
C Collision. collision [146]
CD Clearing Distance from the robot to the closest

object.
objects [94]

CE Collision Energy. collision [183]
CHC Cumulative Heading Changes. legibility [96]
Crisk Estimated risk of collision. collision [75]
DA Deviation angle. deviation [132]
DE Error between the target and actual trajectory. deviation [141]
DHmin Minimum Distance to Humans. comfort [37]
ED End Displacement over a threshold. deviation [48]
FDE Final Displacement Error. deviation [141]
FL Instances where a robot follows a group of pedes-

trians.
group [94]

FR Freezing Robot. success [132]
FSC Full Space Compliance over a trajectory. comfort [183]
HC Human Collisions. collision [123]
IS Robot’s speed when breaking Space Compliance. comfort [43]
J The average change in acceleration per unit time. legibility [4]
LV Linear Velocity. speed [69]
ND Number of Discomfort instances. comfort [105]
NPL Normalised Path Length — ratio between the

path’s length and the distance between the start
and goal locations.

path [132]

NT Navigation Time. time [123]
OT Number of instances where a robot overtakes a

group of pedestrians.
group [94]

PA Average angular deviation between the pedestri-
ans and their direct vector to their goal.

obtrusion [69]

PC Personal Space Cost. comfort [75]
PIF Passes in Front of a moving human. comfort [17]
PL Path Length. path [37]
PT Planning Time. compute [142]
S Success. success [183]
SC Ratio of a trajectory in Space Compliance. comfort [37]
SPL Success Weighted using normalised inverse path

Length.
success [37]

STL Success Weighted by Time. success [111]
TO Timeouts. success [123]
TSC Time in adhering to Space Compliance. comfort [43]
TTC Estimated Minimum Time to Collision if agents’

speeds remain constant.
comfort [11]

TABLE I: Short names and descriptions for the metrics
identified following the methodology described in Sec. II.
We provide a reference where the metric is used and, when
possible, adopt the notation in [37].

Variable Paper
Abruptness of the robot movement [108]
Anxiety caused by the robot [83]
Comfort or compliance [37]
Adequacy of the perceived robot distance. [83]
Awareness and movement adequacy w.r.t. groups. [94]
Overall understanding of the robot’s goals. [152]
Likeability and friendliness [74]
Naturalness and smoothness. [78]
Overall navigation skills. [108]
A robot’s movement is easy to predict. [108]
Perception of safety and risk [37]
Adequacy of the robot’s speed [83]
Politeness and care about pedestrians. [37]
The user’s trust in the robot. [17]
Unobtrusiveness. [52]

TABLE II: Variables identified as surveyed in our review,
accompanied by a reference where they have been used.

Finally, a set of 10 paper presented results with no
superiority claims over the baselines, although they offered
qualitative assessments of the results achieved, with respect
to different metrics and/or scenarios.

Overall, 18 papers acknowledged the difficulty of achiev-

ing top performance across all metrics and argued for the
need to achieve a balance: 11 of them referred to balancing
efficiency and comfort [100, 48, 14, 13, 4, 71, 69, 86, 164,
123, 150], and 6 of them referred to the balance between
efficiency and safety [4, 13, 105, 183, 1, 129].

IV. CONCLUSIONS

Despite the efforts of the Social Robot Navigation com-
munity, benchmarking protocols are still very heterogeneous,
as can be graphically appreciated in Fig. 3. Although this is
unsurprising when considering baselines (as new algorithms
appear and older ones become obsolete), the inconsistency
in the number and types of metrics used can be considered
worrying. Using a high number of metrics can be difficult
to interpret, redundant if there are highly-correlated metrics,
and potentially lead to biased conclusions. However, a single
metric linked to a single aspect (e.g., S for success rate, or
SC for space compliance), cannot capture the complexity of
social robot navigation tasks. The number of metrics ranged
from 1 (in 5 different instances) to 9 in [94]). Interestingly, 38
of the 85 papers reviewed, did not use any social navigation
metric, and CrowdNav [89] was the only baseline created
since 2020 that the papers reviewed used as a baseline.

Regarding RQ1: The 4 most common social metrics were
DHmin, SC, PC, and Crisk. Authors frequently referred
to the metrics being popular, or providing good coverage
of properties when making their choices, although 52.2%
did not provide a rationale. Most papers choose metrics
such as PL or T over weighted metrics such as SPL or
STL, which went against our expectations. The 4 most
popular non-social metrics were S, T , C and PL, with
similar justifications provided as for social metrics. The most
common baseline algorithms used when benchmarking
were ORCA [163], DWA [36], SFM [50], CADRL [21],
SARL [19], CrowdNav [89] and LSTM-RL [31]. Authors
frequently referred to their popularity, to their state-of-the-art
status, and to baselines being the method they are improving
when specifying why those were chosen—although 35.8%
of papers did not specify any.

Regarding RQ2, 18.9% of the papers reviewed performed
human-based surveying, but only 7.1% included 3rd party
algorithms in their benchmarks.

Regarding RQ3, in most cases, papers an only claimed to
have the best performance over all metrics and algorithms if
the number of metrics and algorithms used for comparison
were few. A considerable number of papers, 32.7%, refer-
enced directly or indirectly to the difficulty of achieving best
performance in all metrics, so most papers made their claim
looking only at a subset of the metrics used, or referred to
social variables being more important than efficiency-related
metrics such as the navigation time T .

As a recommendation, to make benchmarking clearer, it
can be beneficial to refrain from simply stating the frame-
work used (e.g., “ROS navigation stack”) when reporting
results; explicitly mentioning the specific algorithm and
configuration parameters can be much clearer for the readers.
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[9] Kemal Bektaş and H Işıl Bozma. “Apf-rl: Safe map-
less navigation in unknown environments”. In: 2022
International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2022, pp. 7299–7305.

[10] Rashmi Bhaskara, Maurice Chiu, and Aniket Bera.
“SG-LSTM: Social Group LSTM for Robot Navi-
gation Through Dense Crowds”. In: 2023 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).
Detroit, MI, USA: IEEE, Oct. 1, 2023, pp. 3835–
3840. DOI: 10 . 1109 / iros55552 . 2023 .
10341954. URL: https : / / ieeexplore .
ieee.org/document/10341954/ (visited on
07/14/2025).

[11] Abhijat Biswas et al. “Socnavbench: A grounded
simulation testing framework for evaluating social
navigation”. In: ACM Transactions on Human-Robot
Interaction (THRI) 11.3 (2022), pp. 1–24.

[12] Lv. Calderita et al. “Social Robot Navigation adapted
to Time-dependent Affordance Spaces: a Use Case
for Caregiving Centers”. In: 2020 29th IEEE In-
ternational Conference on Robot and Human Inter-
active Communication (RO-MAN). 2020 29th IEEE
International Conference on Robot and Human In-
teractive Communication (RO-MAN). Naples, Italy:
IEEE, Aug. 2020, pp. 944–949. DOI: 10.1109/
ro-man47096.2020.9223514. URL: https:
/ / ieeexplore . ieee . org / document /
9223514/ (visited on 07/14/2025).

[13] Enrico Cancelli et al. “Exploiting Proximity-Aware
Tasks for Embodied Social Navigation”. In: 2023
IEEE/CVF International Conference on Computer
Vision (ICCV). 2023 IEEE/CVF International Con-
ference on Computer Vision (ICCV). Paris, France:
IEEE, Oct. 1, 2023, pp. 10923–10933. DOI: 10.
1109/iccv51070.2023.01006. URL: https:
/ / ieeexplore . ieee . org / document /
10377162/ (visited on 07/14/2025).

[14] Thanh Nguyen Canh, Xiem HoangVan, and Nak
Young Chong. “Enhancing Social Robot Naviga-



tion with Integrated Motion Prediction and Trajec-
tory Planning in Dynamic Human Environments”.
In: 2024 24th International Conference on Control,
Automation and Systems (ICCAS). 2024 24th In-
ternational Conference on Control, Automation and
Systems (ICCAS). Jeju, Korea, Republic of: IEEE,
Oct. 29, 2024, pp. 731–736. DOI: 10 . 23919 /
iccas63016.2024.10773156. URL: https:
/ / ieeexplore . ieee . org / document /
10773156/ (visited on 07/14/2025).

[15] Charlotte Cathcart et al. “Proactive Opinion-Driven
Robot Navigation Around Human Movers”. In:
2023 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2023 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS). Detroit, MI, USA: IEEE,
Oct. 1, 2023, pp. 4052–4058. DOI: 10 . 1109 /
iros55552.2023.10341745. URL: https:
/ / ieeexplore . ieee . org / document /
10341745/ (visited on 07/14/2025).

[16] Rohan Chandra et al. “SocialMapf: Optimal and
Efficient Multi-Agent Path finding With Strategic
Agents for Social Navigation”. In: IEEE Robotics
and Automation Letters 8.6 (June 2023). Number:
6 Publisher: Institute of Electrical and Electron-
ics Engineers (IEEE), pp. 3214–3221. ISSN: 2377-
3766, 2377-3774. DOI: 10.1109/lra.2023.
3265169. URL: https : / / ieeexplore .
ieee.org/document/10093969/ (visited on
07/14/2025).

[17] Yuhang Che, Allison M. Okamura, and Dorsa
Sadigh. “Efficient and Trustworthy Social Navigation
via Explicit and Implicit Robot-Human Communica-
tion”. In: IEEE Transactions on Robotics 36.3 (June
2020). Number: 3 Publisher: Institute of Electri-
cal and Electronics Engineers (IEEE), pp. 692–707.
ISSN: 1552-3098, 1941-0468. DOI: 10.1109/tro.
2020.2964824. URL: https://ieeexplore.
ieee.org/document/8967120/ (visited on
07/14/2025).

[18] Bao Xin Chen, Raghavender Sahdev, and John K
Tsotsos. “Integrating stereo vision with a CNN
tracker for a person-following robot”. In: Inter-
national Conference on Computer Vision Systems.
Springer. 2017, pp. 300–313.

[19] Changan Chen et al. “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based
deep reinforcement learning”. In: International Con-
ference on Robotics and Automation. IEEE. 2019,
pp. 6015–6022.

[20] Changan Chen et al. “Relational graph learning
for crowd navigation”. In: 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS). IEEE. 2020, pp. 10007–10013.

[21] Yu Fan Chen et al. “Decentralized non-
communicating multiagent collision avoidance
with deep reinforcement learning”. In: 2017 IEEE

international conference on robotics and automation
(ICRA). IEEE. 2017, pp. 285–292.

[22] Yu Fan Chen et al. “Socially aware motion plan-
ning with deep reinforcement learning”. In: 2017
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2017, pp. 1343–
1350.

[23] Paco Chipana et al. “Gaussian-based Proxemic Zone
Definition of Groups for Social Robot Naviga-
tion”. In: 2024 Latin American Robotics Symposium
(LARS). 2024 Latin American Robotics Symposium
(LARS). Arequipa, Peru: IEEE, Nov. 11, 2024,
pp. 1–6. DOI: 10.1109/lars64411.2024.
10786418. URL: https : / / ieeexplore .
ieee.org/document/10786418/ (visited on
07/14/2025).

[24] Yuxiang Cui et al. “Learning World Transition
Model for Socially Aware Robot Navigation”. In:
2021 IEEE International Conference on Robotics
and Automation (ICRA). 2021 IEEE International
Conference on Robotics and Automation (ICRA).
Xi’an, China: IEEE, May 30, 2021, pp. 9262–9268.
DOI: 10.1109/icra48506.2021.9561973.
URL: https : / / ieeexplore . ieee . org /
document/9561973/ (visited on 07/14/2025).

[25] Guido M. D’Amely Di Melendugno et al.
“Hyp2Nav: Hyperbolic Planning and Curiosity
for Crowd Navigation”. In: 2024 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS). 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS). Abu Dhabi, United Arab Emirates:
IEEE, Oct. 14, 2024, pp. 13023–13030. DOI:
10 . 1109 / iros58592 . 2024 . 10801513.
URL: https : / / ieeexplore . ieee . org /
document/10801513/ (visited on 07/14/2025).

[26] Alex Day and Ioannis Karamouzas. “A Study in
Zucker: Insights on Interactions Between Humans
and Small Service Robots”. In: IEEE Robotics
and Automation Letters 9.3 (Mar. 2024). Number:
3 Publisher: Institute of Electrical and Electron-
ics Engineers (IEEE), pp. 2471–2478. ISSN: 2377-
3766, 2377-3774. DOI: 10.1109/lra.2024.
3355641. URL: https : / / ieeexplore .
ieee.org/document/10404067/ (visited on
07/14/2025).

[27] Tiago Rodrigues De Almeida et al. “THOR-MAGNI
Act: Actions for Human Motion Modeling in Robot-
Shared Industrial Spaces”. In: 2025 20th ACM/IEEE
International Conference on Human-Robot Interac-
tion (HRI). 2025 20th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI). Mel-
bourne, Australia: IEEE, Mar. 4, 2025, pp. 1083–
1087. DOI: 10 . 1109 / hri61500 . 2025 .
10973897. URL: https : / / ieeexplore .



ieee.org/document/10973897/ (visited on
07/14/2025).

[28] Edsger W Dijkstra. “A note on two problems in
connexion with graphs”. In: Edsger Wybe Dijkstra:
his life, work, and legacy. 2022, pp. 287–290.

[29] Andrea Eirale, Matteo Leonetti, and Marcello
Chiaberge. “Learning Social Cost Functions for
Human-Aware Path Planning”. In: 2024 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS). 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS). Abu Dhabi, United Arab Emirates: IEEE,
Oct. 14, 2024, pp. 5364–5371. DOI: 10.1109/
iros58592.2024.10802768. URL: https:
/ / ieeexplore . ieee . org / document /
10802768/ (visited on 07/14/2025).

[30] Michael Everett, Yu Fan Chen, and Jonathan P How.
“Collision avoidance in pedestrian-rich environments
with deep reinforcement learning”. In: Ieee Access 9
(2021), pp. 10357–10377.

[31] Michael Everett, Yu Fan Chen, and Jonathan P How.
“Motion planning among dynamic, decision-making
agents with deep reinforcement learning”. In: 2018
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2018, pp. 3052–
3059.

[32] Tingxiang Fan et al. “Crowdmove: Autonomous
mapless navigation in crowded scenarios”. In: arXiv
preprint arXiv:1807.07870 (2018).

[33] Tingxiang Fan et al. “Fully distributed multi-robot
collision avoidance via deep reinforcement learning
for safe and efficient navigation in complex scenar-
ios”. In: arXiv preprint arXiv:1808.03841 (2018).

[34] Fang Fang et al. “A Unified Framework for Pedes-
trian Trajectory Prediction and Social-Friendly Nav-
igation”. In: IEEE Transactions on Industrial Elec-
tronics 71.9 (Sept. 2024). Number: 9 Publisher: Insti-
tute of Electrical and Electronics Engineers (IEEE),
pp. 11072–11082. ISSN: 0278-0046, 1557-9948. DOI:
10.1109/tie.2023.3342301. URL: https:
/ / ieeexplore . ieee . org / document /
10372213/ (visited on 07/14/2025).

[35] Anthony Favier, Phani Teja Singamaneni, and
Rachid Alami. “An Intelligent Human Avatar to
Debug and Challenge Human-aware Robot Navi-
gation Systems”. In: 2022 17th ACM/IEEE Inter-
national Conference on Human-Robot Interaction
(HRI). 2022 17th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI). Sap-
poro, Japan: IEEE, Mar. 7, 2022, pp. 760–764.
DOI: 10.1109/hri53351.2022.9889651.
URL: https : / / ieeexplore . ieee . org /
document/9889651/ (visited on 07/14/2025).

[36] Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
“The dynamic window approach to collision avoid-
ance”. In: IEEE robotics & automation magazine 4.1
(2002), pp. 23–33.

[37] Anthony Francis et al. “Principles and Guidelines for
Evaluating Social Robot Navigation Algorithms”. In:
ACM Transactions on Human-Robot Interaction 14.2
(2025), p. 65. DOI: 10.1145/3700599.

[38] Hao Fu, Qiang Wang, and Haodong He. “Path-
Following Navigation in Crowds With Deep Rein-
forcement Learning”. In: IEEE Internet of Things
Journal 11.11 (June 1, 2024). Number: 11 Publisher:
Institute of Electrical and Electronics Engineers
(IEEE), pp. 20236–20245. ISSN: 2327-4662, 2372-
2541. DOI: 10.1109/jiot.2024.3370575.
URL: https : / / ieeexplore . ieee . org /
document/10445747/ (visited on 07/14/2025).

[39] Yusuke Fujioka, Yuyi Liu, and Takayuki Kanda. “I
Need to Pass Through! Understandable Robot Behav-
ior for Passing Interaction in Narrow Environment”.
In: Proceedings of the 2024 ACM/IEEE International
Conference on Human-Robot Interaction. HRI ’24:
ACM/IEEE International Conference on Human-
Robot Interaction. Boulder CO USA: ACM, Mar. 11,
2024, pp. 213–221. DOI: 10.1145/3610977.
3634951. URL: https : / / dl . acm . org /
doi/10.1145/3610977.3634951 (visited on
07/14/2025).

[40] Graeme Gange, Daniel Harabor, and Peter J Stuckey.
“Lazy CBS: implicit conflict-based search using
lazy clause generation”. In: Proceedings of the in-
ternational conference on automated planning and
scheduling. Vol. 29. 2019, pp. 155–162.

[41] Juan Carlos Garcia et al. “Towards the design
of efficient and versatile cognitive robotic archi-
tecture based on distributed, low-latency working
memory”. In: 2022 IEEE International Confer-
ence on Autonomous Robot Systems and Competi-
tions (ICARSC). 2022 IEEE International Confer-
ence on Autonomous Robot Systems and Compe-
titions (ICARSC). Santa Maria da Feira, Portugal:
IEEE, Apr. 29, 2022, pp. 9–14. DOI: 10.1109/
icarsc55462.2022.9784798. URL: https:
/ / ieeexplore . ieee . org / document /
9784798/ (visited on 07/14/2025).

[42] Francesco Giuliari et al. “Transformer networks for
trajectory forecasting”. In: 2020 25th international
conference on pattern recognition (ICPR). IEEE.
2021, pp. 10335–10342.

[43] Mahsa Golchoubian et al. “Uncertainty-Aware DRL
for Autonomous Vehicle Crowd Navigation in Shared
Space”. In: IEEE Transactions on Intelligent Vehi-
cles 9.12 (Dec. 2024). Number: 12 Publisher: Insti-
tute of Electrical and Electronics Engineers (IEEE),
pp. 7931–7944. ISSN: 2379-8904, 2379-8858. DOI:
10.1109/tiv.2024.3405330. URL: https:
/ / ieeexplore . ieee . org / document /
10538404/ (visited on 07/14/2025).

[44] Alex Goldhoorn et al. “Searching and tracking peo-
ple in urban environments with static and dynamic



obstacles”. In: Robotics and Autonomous Systems 98
(2017), pp. 147–157.

[45] Elias Goldsztejn, Tal Feiner, and Ronen Braf-
man. “PTDRL: Parameter Tuning Using Deep Re-
inforcement Learning”. In: 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS). 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Detroit, MI,
USA: IEEE, Oct. 1, 2023, pp. 11356–11362. DOI:
10 . 1109 / iros55552 . 2023 . 10342140.
URL: https : / / ieeexplore . ieee . org /
document/10342140/ (visited on 07/14/2025).

[46] Elias Goldsztejn, Tal Feiner, and Ronen Brafman.
“PTDRL: parameter tuning using deep reinforcement
learning”. In: 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).
IEEE. 2023, pp. 11356–11362.

[47] Ronja Guldenring et al. “Learning local planners for
human-aware navigation in indoor environments”.
In: 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE. 2020,
pp. 6053–6060.

[48] James R. Han et al. “DR-MPC: Deep Residual
Model Predictive Control for Real-World Social Nav-
igation”. In: IEEE Robotics and Automation Let-
ters 10.4 (Apr. 2025). Number: 4 Publisher: Insti-
tute of Electrical and Electronics Engineers (IEEE),
pp. 4029–4036. ISSN: 2377-3766, 2377-3774. DOI:
10.1109/lra.2025.3546106. URL: https:
/ / ieeexplore . ieee . org / document /
10904316/ (visited on 07/14/2025).

[49] Peter E Hart, Nils J Nilsson, and Bertram Raphael.
“A formal basis for the heuristic determination of
minimum cost paths”. In: IEEE transactions on Sys-
tems Science and Cybernetics 4.2 (1968), pp. 100–
107.

[50] Dirk Helbing and Peter Molnar. “Social force model
for pedestrian dynamics”. In: Physical review E 51.5
(1995), p. 4282.

[51] Noriaki Hirose et al. “Exaug: Robot-conditioned nav-
igation policies via geometric experience augmenta-
tion”. In: arXiv preprint arXiv:2210.07450 (2022).

[52] Noriaki Hirose et al. “SACSoN: Scalable Au-
tonomous Control for Social Navigation”. In: IEEE
Robotics and Automation Letters 9.1 (Jan. 2024).
Number: 1 Publisher: Institute of Electrical and Elec-
tronics Engineers (IEEE), pp. 49–56. ISSN: 2377-
3766, 2377-3774. DOI: 10.1109/lra.2023.
3329626. URL: https : / / ieeexplore .
ieee.org/document/10305270/ (visited on
07/14/2025).

[53] Simon Holk, Daniel Marta, and Iolanda Leite. “PO-
LITE: Preferences Combined with Highlights in Re-
inforcement Learning”. In: 2024 IEEE International
Conference on Robotics and Automation (ICRA).
2024 IEEE International Conference on Robotics
and Automation (ICRA). Yokohama, Japan: IEEE,

May 13, 2024, pp. 2288–2295. DOI: 10.1109/
icra57147.2024.10610505. URL: https:
/ / ieeexplore . ieee . org / document /
10610505/ (visited on 07/14/2025).

[54] Simon Holk, Daniel Marta, and Iolanda Leite.
“PREDILECT: Preferences Delineated with Zero-
Shot Language-based Reasoning in Reinforcement
Learning”. In: Proceedings of the 2024 ACM/IEEE
International Conference on Human-Robot Interac-
tion. HRI ’24: ACM/IEEE International Conference
on Human-Robot Interaction. Boulder CO USA:
ACM, Mar. 11, 2024, pp. 259–268. DOI: 10.1145/
3610977.3634970. URL: https://dl.acm.
org / doi / 10 . 1145 / 3610977 . 3634970
(visited on 07/14/2025).

[55] Blake Holman et al. “Watch Where You’re Go-
ing! Gaze and Head Orientation as Predictors for
Social Robot Navigation”. In: 2021 IEEE Inter-
national Conference on Robotics and Automation
(ICRA). 2021 IEEE International Conference on
Robotics and Automation (ICRA). Xi’an, China:
IEEE, May 30, 2021, pp. 3553–3559. DOI: 10 .
1109 / icra48506 . 2021 . 9561286. URL:
https : / / ieeexplore . ieee . org /
document/9561286/ (visited on 07/14/2025).

[56] Jarrett Holtz and Joydeep Biswas. “SocialGym: A
Framework for Benchmarking Social Robot Naviga-
tion”. In: 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2022
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Kyoto, Japan: IEEE,
Oct. 23, 2022, pp. 11246–11252. DOI: 10.1109/
iros47612 . 2022 . 9982021. URL: https :
/ / ieeexplore . ieee . org / document /
9982021/ (visited on 07/14/2025).

[57] Jarrett Holtz et al. “Iterative Program Synthesis for
Adaptable Social Navigation”. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).
Prague, Czech Republic: IEEE, Sept. 27, 2021,
pp. 6256–6261. DOI: 10 . 1109 / iros51168 .
2021.9636540. URL: https://ieeexplore.
ieee.org/document/9636540/ (visited on
07/14/2025).

[58] Zhimin Hou et al. “Off-policy maximum entropy
reinforcement learning: Soft actor-critic with advan-
tage weighted mixture policy (sac-awmp)”. In: arXiv
preprint arXiv:2002.02829 (2020).

[59] Eddy Hudson, Garrett Warnell, and Peter Stone.
“Rail: A modular framework for reinforcement-
learning-based adversarial imitation learning”. In:
arXiv preprint arXiv:2105.03756 (2021).

[60] Jun Jin et al. “Mapless navigation among dynamics
with social-safety-awareness: a reinforcement learn-
ing approach from 2d laser scans”. In: 2020 IEEE



international conference on robotics and automation
(ICRA). IEEE. 2020, pp. 6979–6985.

[61] Tobias Johannink et al. “Residual reinforcement
learning for robot control”. In: 2019 international
conference on robotics and automation (ICRA).
IEEE. 2019, pp. 6023–6029.

[62] Aditya Kapoor et al. “SocNavGym: A Reinforcement
Learning Gym for Social Navigation”. In: 2023 32nd
IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). 2023 32nd
IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). Busan, Ko-
rea, Republic of: IEEE, Aug. 28, 2023, pp. 2010–
2017. DOI: 10.1109/ro- man57019.2023.
10309591. URL: https : / / ieeexplore .
ieee.org/document/10309591/ (visited on
07/14/2025).

[63] Kristofer Kappel and Paulo R. Ferreira. “Towards
Comfortable and Socially Acceptable Navigation
in Autonomous Motorized Wheelchairs”. In: 2023
Latin American Robotics Symposium (LARS), 2023
Brazilian Symposium on Robotics (SBR), and 2023
Workshop on Robotics in Education (WRE). 2023
Latin American Robotics Symposium (LARS), 2023
Brazilian Symposium on Robotics (SBR), and 2023
Workshop on Robotics in Education (WRE). Sal-
vador, Brazil: IEEE, Oct. 9, 2023, pp. 319–324. DOI:
10 . 1109 / lars / sbr / wre59448 . 2023 .
10332989. URL: https : / / ieeexplore .
ieee.org/document/10332989/ (visited on
07/14/2025).

[64] Sertac Karaman and Emilio Frazzoli. “Sampling-
based algorithms for optimal motion planning”. In:
The international journal of robotics research 30.7
(2011), pp. 846–894.

[65] Haresh Karnan et al. “Socially CompliAnt Naviga-
tion Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation”. In: IEEE
Robotics and Automation Letters 7.4 (Oct. 2022).
Number: 4 Publisher: Institute of Electrical and Elec-
tronics Engineers (IEEE), pp. 11807–11814. ISSN:
2377-3766, 2377-3774. DOI: 10 . 1109 / lra .
2022.3184025. URL: https://ieeexplore.
ieee.org/document/9799755/ (visited on
07/14/2025).

[66] Jaroslaw Karwowski and Wojciech Szynkiewicz.
“SRPB: a benchmark for the quantitative evalua-
tion of a social robot navigation”. In: 2023 27th
International Conference on Methods and Models
in Automation and Robotics (MMAR). 2023 27th
International Conference on Methods and Models in
Automation and Robotics (MMAR). Miedzyzdroje,
Poland: IEEE, Aug. 22, 2023, pp. 411–416. DOI:
10 . 1109 / mmar58394 . 2023 . 10242422.
URL: https : / / ieeexplore . ieee . org /
document/10242422/ (visited on 07/14/2025).
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